Disclination lines at homogeneous and heterogeneous colloids immersed in a chiral liquid crystal.

نویسندگان

  • Michael Melle
  • Sergej Schlotthauer
  • Carol K Hall
  • Enrique Diaz-Herrera
  • Martin Schoen
چکیده

In the present work we perform Monte Carlo simulations in the isothermal-isobaric ensemble to study defect topologies formed in a cholesteric liquid crystal due to the presence of a spherical colloidal particle. Topological defects arise because of the competition between anchoring at the colloidal surface and the local director. We consider homogeneous colloids with either local homeotropic or planar anchoring to validate our model by comparison with earlier lattice Boltzmann studies. Furthermore, we perform simulations of a colloid in a twisted nematic cell and discuss the difference between induced and intrinsic chirality on the formation of topological defects. We present a simple geometrical argument capable of describing the complex three-dimensional topology of disclination lines evolving near the surface of the colloid. The presence of a Janus colloid in a cholesteric host fluid reveals a rich variety of defect structures. Using the Frank free energy we analyze these defects quantitatively indicating a preferred orientation of the Janus colloid relative to the cholesteric helix.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Connecting and disconnecting nematic disclination lines in microfluidic channels.

Disclination lines in nematic liquid crystals can be used as "soft rails" for the transport of colloids or droplets through microfluidic channels [A. Sengupta, C. Bahr and S. Herminghaus, Soft Matter, 2013, 9, 7251]. In the present study we report on a method to connect and disconnect disclination lines in microfluidic channels using the interplay between anchoring, flow, and electric field. We...

متن کامل

Micro-wires self-assembled and 3D-connected with the help of a nematic liquid crystal.

We discuss a method for producing automatic 3D connections at right places between substrates in front of one another. The idea is based on the materialization of disclination lines working as templates. The lines are first created in the nematic liquid crystal (5CB) at the very place where microwires have to be synthesized. Due to their anchoring properties, colloids dispersed into the nematic...

متن کامل

Colloids in cholesterics: size-dependent defects and non-stokesian microrheology.

We simulate a colloidal particle (radius R) in a cholesteric liquid crystal (pitch p) with tangential order parameter alignment at the particle surface. The local defect structure evolves from a dipolar pair of surface defects (boojums) at small R/p to a pair of twisted disclination lines wrapping around the particle at larger values. On dragging the colloid with small velocity v through the me...

متن کامل

Interactions between spherical colloids mediated by a liquid crystal: a molecular simulation and mesoscale study.

Monte Carlo simulations and dynamic field theory (DyFT) are used to study the interactions between dilute spherical particles, dispersed in nematic and isotropic phases of a liquid crystal. A recently developed simulation method (expanded ensemble density of states) was used to determine the potential of mean force (PMF) between the two spheres as a function of their separation and size. The PM...

متن کامل

Switching hydrodynamics in multi - domain , twisted nematic , liquid crystal devices

– We study the switching dynamics in two-domain and four-domain twisted nematic liquid crystal devices. The equilibrium configuration of these devices involves the coexistence of regions characterised by different handedness of the inherent director twist. At the boundaries between these regions there are typically disclinations lines. The dynamics of the disclination lines controls the propert...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Soft matter

دوره 10 30  شماره 

صفحات  -

تاریخ انتشار 2014